Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.

Filter by Pathway Type:



Showing 21 - 30 of 49833 pathways
SMPDB ID Pathway Chemical Compounds Proteins

SMP0000071

Pw000028 View Pathway
Metabolic

Ketone Body Metabolism

Ketone bodies are consisted of acetone, beta-hydroxybutyrate and acetoacetate. In liver cells' mitochondria, acetyl-CoA can synthesize acetoacetate and beta-hydroxybutyrate; and spontaneous decarboxylation of acetoacetate will form acetone. Metabolism of ketone body (also known as ketogenesis) contains several reactions. Acetoacetic acid (acetoacetate) will be catalyzed to form acetoacetyl-CoA irreversibly by 3-oxoacid CoA-transferase 1 that also coupled with interconversion of succinyl-CoA and succinic acid. Acetoacetic acid can also be catalyzed by mitochondrial D-beta-hydroxybutyrate dehydrogenase to form (R)-3-Hydroxybutyric acid with NADH. Ketogenesis occurs mostly during fasting and starvation. Stored fatty acids will be broken down and mobilized to produce large amount of acetyl-CoA for ketogenesis in liver, which can reduce the demand of glucose for other tissues. Acetone cannot be converted back to acetyl-CoA; therefore, they are either breathed out through the lungs or excreted in urine.

SMP0000059

Pw000162 View Pathway
Metabolic

Urea Cycle

Urea, also known as carbamide, is a waste product made by a large variety of living organisms and is the main component of urine. Urea is created in the liver, through a string of reactions that are called the Urea Cycle. This cycle is also called the Ornithine Cycle, as well as the Krebs-Henseleit Cycle. There are some essential compounds required for the completion of this cycle, such as arginine, citrulline and ornithine. Arginine cleaves and creates urea and ornithine, and the reactions that follow see urea residue build up on ornithine, which recreates arginine and keeps the cycle going. Ornithine is transported to the mitochondrial matrix, and once there, ornithine carbamoyltransferase uses carbamoyl phosphate to create citrulline. After this, citrulline is transported to the cytosol. Once here, citrulline and aspartate team up to create argininosuccinic acid. After this, argininosuccinate lyase creates l-arginine. L-arginine finally uses arginase-1 to create ornithine again, which will be transported to the mitochondrial matrix and restart the urea cycle once more.

SMP0000058

Pw000150 View Pathway
Metabolic

Starch and Sucrose Metabolism

Amylase enzymes secreted in saliva by the parotid gland and in the small intestine play an important role in initiating starch digestion. The products of starch digestion are but not limited to maltotriose, maltose, limit dextrin, and glucose. The action of enterocytes of the small intestine microvilli further break down limit dextrins and disaccharides into monosaccharides: glucose, galactose, and fructose. Once released from starch or once ingested, sucrose can be degraded into beta-D-fructose and alpha-D-glucose via lysosomal alpha-glucosidase or sucrose-isomaltase. Beta-D-fructose can be converted to beta-D-fructose-6-phosphate by glucokinase and then to alpha-D-glucose-6-phosphate by the action of glucose phosphate isomerase. Phosphoglucomutase 1 can then act on alpha-D-glucose-6-phosphate (G6P) to generate alpha-D-glucose-1-phosphate. Alpha-D-glucose-1-phosphate (G6P) has several possible fates. It can enter into gluconeogenesis, glycolysis or the nucleotide sugar metabolism pathway. UDP-glucose pyrophosphorylase 2 can convert alpha-D-glucose-1-phosphate into UDP-glucose, which can then be converted to UDP-xylose or UDP-glucuronate and, eventually to glucuronate. UDP-glucose can also serve as a precursor to the synthesis of glycogen via glycogen synthase. Glycogen is an analogue of amylopectin (“plant starch”) and acts as a secondary short-term energy storage for animal cells. It’s formed primarily in liver and muscle tissues, but is also formed at secondary sites such as the central nervous system and the stomach. In both cases it exists as free granules in the cytosol. Glycogen is a crucial element of the glucose cycle as another enzyme, glycogen phosphorylase, cleaves off glycogen from the nonreducing ends of a chain to producer glucose-1-phosphate monomers. From there, the glucose-1-phosphate monomers have three possible fates: (1) enter the glycolysis pathway as glucose-6—phosphate (G6P) to generate energy, (2) enter the pentose phosphate pathway to produce NADPH and pentose sugar, or (3) enter the gluconeogenesis pathway by being dephosphorylated into glucose in liver or kidney tissues. To initiate the process of glycogen chain-lengthening, glycogenin is required because glycogen synthase can only add to existing chains. This action is subsequently followed by the action of glycogen synthase which catalyzes the formation of polymers of UDP-glucose connected by (α1→4) glycosidic bonds to form a glycogen chain. Importantly, amylo (α1→4) to (α1→6) transglycosylase catalyzes glycogen branch formation via the transfer of 6-7 glucose residues from a nonreducing end with greater than 11 residues to the C-6 OH- group in the interior of a glycogen molecule.

SMP0090879

Pw091899 View Pathway
Physiological

Hop Pathway in Cardiac Development

The transcription of DNA is aided in large part by something called "homeodomain transcription factors". They are a diverse group of DNA binding factors. In fact, genes which are created with the aid of homeodomain factors tend to conglomerate and are responsible for anterior-posterior patterning. There is much to be said as well regarding the development and growth of cardiac myocytes and homedomain transcription factors. Indeed, at the early stages of the cell differentiation of cardiac myoctes a delicate balance of joint expression of several factors is needed for correct development (namely: serum response factor (SRF), and GATA4) and a homeodomain factor known as Nkx2-5! The joint expression of the aforementioned factors is the critical in the development of myocytes as well as gene expression in the cardiac region. To underline the importance of the homeodomain transcription factors, note that an error in the Nkx2-5 gene has severe consequences, which include, though are not necessarily limited to, embryonic lethality, as well as severe problems in general heart development. To put all this in context of the pathway in question, Hop actually stands for (Homeodomain Only Protein). The Hop gene plays an important role in the cardiac development we have been describing, as it too encodes a homedomain factor which plays an important role at the onset stages of cardiac development. The Hop gene is downstream of the Mkx2-5 factor we discussed earlier, and similar to it, improper activation of Hop can lead to severe cardiac development issues. In mice for example, not have the Hop gene results in alterations to the cell cycle. In particular, cardiac cells are unable to exit the cycle at the correct stage and continue grow after normal developmental stage has finished. There exists an interesting symbiosis between Hop and SRF. First, Hop regulates gene expression by either binding to SRF or by preventing SRF binding to DNA. This occurs because Hop does not have anything to bind to DNA with, and as such must have different methods to regulate gene expression. Second, when Hop blocks normal SRF binding, the results is that the activation of genes in the heart is affected and normal development does not occur. In a nutshell, what can be said about this tango action of SRF and Hop is this: during the first stages of development, what is observed is that the Hop interaction is one which results in a cessation of the differentiation processes which are induced by SRF. In the later stages, it appears that Hop reduces cell proliferation which is normally caused by SRF.

SMP0000057

Pw000005 View Pathway
Metabolic

Citric Acid Cycle

The citric acid cycle, which is also known as the tricarboxylic acid cycle (TCA cycle) or the Krebs cycle, is a connected series of enzyme-catalyzed chemical reactions of central importance to all aerobic organisms (i.e. organisms that use oxygen for cellular respiration). The citric acid cycle is named after citrate or citric acid, a tricarboxylic acid that is both consumed and regenerated through this pathway. The citric acid cycle was discovered in 1937 by Hans Adolf Krebs while he worked at the University of Sheffield in England (PMID: 16746382). Krebs received the Nobel Prize for his discovery in 1953. Krebs’ extensive work on this pathway is also why the citric acid or TCA cycle is often referred to as the Krebs cycle. Metabolically, the citric acid cycle allows the release of energy (ultimately in the form of ATP) from carbohydrates, fats, and proteins through the oxidation of acetyl-CoA. The citric acid cycle also produces CO2, the precursors for several amino acids (aspartate, asparagine, glutamine, proline) and NADH – all of which are used in other important metabolic pathways, such as amino acid synthesis and oxidative phosphorylation (OxPhos). The net yield of one “turn” of the TCA cycle in terms of energy-containing compounds is one GTP, one FADH2, and three NADH molecules. The NADH molecules are used in oxidative phosphorylation to generate ATP. In eukaryotes, the citric acid cycle occurs in the mitochondrial matrix. In prokaryotes, the citric acid cycle occurs in the cytoplasm. In eukaryotes, the citric acid or TCA cycle has a total of 10 steps that are mediated by 8 different enzymes. Key to the whole cycle is the availability of acetyl-CoA. One of the primary sources of acetyl-CoA is from the breakdown of glucose (and other sugars) by glycolysis. This process generates pyruvate. Pyruvate is decarboxylated by pyruvate dehydrogenase to generate acetyl-CoA. The citric acid cycle begins with acetyl-CoA transferring its two-carbon acetyl group to the four-carbon acceptor compound (oxaloacetate) to form a six-carbon compound (citrate) through the enzyme citrate synthase. The resulting citrate is then converted to cis-aconitate and then isocitrate via the enzyme aconitase. The resulting isocitrate then combines with NAD+ to form oxalosuccinate and NADH, which is then converted into alpha-ketoglutarate (and CO2) through the action of the enzyme known as isocitrate dehydrogenase. The resulting alpha-ketoglutarate combines with NAD+ and CoA-SH to produce succinyl-CoA, NADH, and CO2. This step is mediated by the enzyme alpha-ketoglutarate dehydrogenase. The resulting succinyl-CoA combines with GDP and organic phosphate to produce succinate, CoA-SH, and GTP. This phosphorylation reaction is performed by succinyl-CoA synthase. The resulting succinate then combines with ubiquinone to produce two compounds, fumarate and ubiquinol through the action of the enzyme succinate dehydrogenase. The resulting fumarate is then hydrated by the enzyme known as fumarase to produce malate. The resulting malate is oxidized via NAD+ to produce oxaloacetate and NADH. This oxidation reaction is performed by malate dehydrogenase. The resulting oxaloacetate can then combine with acetyl-CoA and the TCA reaction cycle begins again. Overall, in the citric acid cycle, the starting six-carbon citrate molecule loses two carboxyl groups as CO2, leading to the production of a four-carbon oxaloacetate. The two-carbon acetyl-CoA that is the “fuel” for the TCA cycle can be generated by several metabolic pathways including glucose metabolism, fatty acid oxidation, and the metabolism of amino acids. The overall reaction for the citric acid cycle is as follows: acetyl-CoA + 3 NAD+ + FAD + GDP + P + 2H2O = CoA-SH + 3NADH + FADH2 + 3H+ + GTP + 2CO2. Many molecules in the citric acid cycle serve as key precursors for other molecules needed by cells. The citrate generated via the citric acid cycle can serve as an intermediate for fatty acid synthesis; alpha-ketoglutarate can serve as a precursor for glutamate, proline, and arginine; oxaloacetate can serve as a precursor for aspartate and asparagine; succinyl-CoA can serve as a precursor for porphyrins; and acetyl-CoA can serve as a precursor fatty acids, cholesterol, vitamin D, and various steroid hormones. There are several variations to the citric acid cycle that are known. Interestingly, most of the variation lies with the step involving succinyl-CoA production or conversion. Humans and other animals have two different types of succinyl-CoA synthetases. One produces GTP from GDP, while the other produces ATP from ADP (PMID: 9765291). On the other hand, plants have a succinyl-CoA synthetase that produces ATP (ADP-forming succinyl-CoA synthetase) (Jones RC, Buchanan BB, Gruissem W. (2000). Biochemistry & molecular biology of plants (1st ed.). Rockville, Md: American Society of Plant Physiologists. ISBN 0-943088-39-9.). In certain acetate-producing bacteria, such as Acetobacter aceti, an enzyme known as succinyl-CoA:acetate CoA-transferase performs this conversion (PMID: 18502856) while in Helicobacter pylori succinyl-CoA:acetoacetate CoA-transferase is responsible for this reaction (PMID: 9325289). The citric acid cycle is regulated in a number of ways but the primary mechanism is by product inhibition. For instance, NADH inhibits pyruvate dehydrogenase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, and citrate synthase. Acetyl-CoA inhibits pyruvate dehydrogenase, while succinyl-CoA inhibits alpha-ketoglutarate dehydrogenase and citrate synthase. Additionally, ATP inhibits citrate synthase and alpha-ketoglutarate dehydrogenase. Calcium is another important regulator of the citric acid cycle. In particular, it activates pyruvate dehydrogenase phosphatase, which then activates pyruvate dehydrogenase. Calcium also activates isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase (PMID: 171557).

SMP0121001

Pw122268 View Pathway
Physiological

Kidney Function- Proximal Convoluted Tubule

The proximal convoluted tubule is part of the nephron between the Bowman's capsule and the loop of Henle. The proximal convoluted tubule functions to reabsorb sodium, water, and other ions. Sodium and bicarbonate (hydrogen carbonate) are transported by a co-transporter that is responsible for the majority of sodium reabsorption. The bicarbonate, along with hydrogen, are exchanged across the basal and apical membranes, respectively, to effectively regulate the pH of the filtrate. In addition, chloride ions are not normally reabsorbed in large amounts at the proximal tubule compared to other parts of the nephron. However, the reabsorption of chloride, as well as potassium, increases as the amount of water reabsorption increases due to solvent drag (also known as bulk transport). This occurrence explains solute movement secondary to water flow. All the cation and anion transport creates a gradient favourable for ion and water reabsorption, leading to an increase in blood pressure.

SMP0000063

Pw000163 View Pathway
Metabolic

Tryptophan Metabolism

This pathway depicts the metabolic reactions and pathways associated with tryptophan metabolism in animals. Tryptophan is an essential amino acid. This means that it cannot be synthesized by humans and other mammals and therefore must be part of the diet. Unlike animals, plants and microbes can synthesize tryptophan from shikimic acid or anthranilate. As one of the 20 proteogenic amino acids, tryptophan plays an important role in protein biosynthesis through the action of tryptophanyl-tRNA synthetase. As shown in this pathway, tryptophan can be linked to the tryptophanyl-tRNA via either the mitochondrial or cytoplasmic tryptophan tRNA ligases. Also shown in this pathway map is the conversion of tryptophan to serotonin (a neurotransmitter). In this process, tryptophan is acted upon by the enzyme tryptophan hydroxylase, which produces 5-hydroxytryptophan (5HTP). 5HTP is then converted into serotonin (5-HT) via aromatic amino acid decarboxylase. Serotonin, in turn, can be converted into N-acetyl serotonin (via serotonin-N-acetyltransferase) and then melatonin (a neurohormone), via 5-hydroxyindole-O-methyltransferase. The melatonin can be converted into 6-hydroxymelatonin via the action of cytochrome P450s in the endoplasmic reticulum. Serotonin has other fates as well. As depicted in this pathway it can be converted into N-methylserotonin via Indolethylamine-N-methyltransferase (INMT) or it can be converted into formyl-5-hydroxykynurenamine via indoleamine 2,3-dioxygenase. Serotonin may also be converted into 5-methoxyindoleacetate via a series of intermediates including 5-hydroxyindoleacetaldehyde and 5-hydroxyindoleacetic acid. Tryptophan can be converted or broken down into many other compounds as well. It can be converted into tryptamine via the action of aromatic amino acid decarboxylase. The resulting tryptamine can then be converted into indoleacetaldehyde via kynurenine 3-monooxygenase and then into indoleacetic acid via the action of aldehyde dehydrogenase. Tryptophan also leads to the production of a very important compound known as kynurenine. Kynurenine is synthesized via the action of tryptophan 2,3-dioxygnase, which produces N-formylkynurenine. This compound is converted into kynurenine via the enzyme known as kynurenine formamidase (AFMID). Kynurenine has at least 3 fates. First, kynurenine can undergo deamination in a standard transamination reaction yielding kynurenic acid. Secondly, kynurenine can undergo a series of catabolic reactions (involving kynureninase and kynurenine 3-monooxygenase) producing 3-hydroxyanthranilate plus alanine. In this reaction, kynureninase catabolizes the conversion of kynurenine into anthranilic acid while kynurenine—oxoglutarate transaminase (also known as kynurenine aminotransferase or glutamine transaminase K, GTK) catabolizes its conversion into kynurenic acid. The action of kynurenine 3-hydroxylase on kynurenic acid leads to 3-hydroxykynurenine. The oxidation of 3-hydroxyanthranilate converts it into 2-amino-3-carboxymuconic 6-semialdehyde, which has two fates. It can either degrade to form acetoacetate or it can cyclize to form quinolate. Most of the body’s 3-hydroxyanthranilate leads to the production of acetoacetate (a ketone body), which is why tryptophan is also known as a ketogenic amino acid. An important side reaction in the liver involves a non-enzymatic cyclization into quinolate followed by transamination and several rearrangements to yield limited amounts of nicotinic acid, which leads to the production of a small amount of NAD+ and NADP+.

SMP0000012

Pw000017 View Pathway
Metabolic

Catecholamine Biosynthesis

The Catecholamine Biosynthesis pathway depicts the synthesis of catecholamine neurotransmitters. Catecholamines are chemical hormones released from the adrenal glands as a response to stress that activate the sympathetic nervous system. They are composed of a catechol group and are derived from amino acids. The commonly found catecholamines are epinephrine (adrenaline), norepinephrine (noradrenaline) and dopamine. They are synthesized in catecholaminergic neurons by four enzymes, beginning with tyrosine hydroxylase (TH), which generates L-DOPA from tyrosine. The L-DOPA is then converted to dopamine via aromatic L-amino acid decarboxylase (AADC), which becomes norepinephrine via dopamine beta-hydroxylase (DBH); and finally is converted to epinephrine via phenylethanolamine N-methyltransferase (PNMT).

SMP0000048

Pw000151 View Pathway
Metabolic

Nicotinate and Nicotinamide Metabolism

Nicotinate (niacin) and nicotinamide - more commonly known as vitamin B3 - are precursors of the coenzymes nicotinamide-adenine dinucleotide (NAD+) and nicotinamide-adenine dinucleotide phosphate (NADP+). NAD+ synthesis occurs either de novo from amino acids, or a salvage pathway from nicotinamide. Most organisms use the de novo pathway whereas the savage pathway is only typically found in mammals. The specifics of the de novo pathway varies between organisms, but most begin by forming quinolinic acid (QA) from tryptophan (Trp) in animals, or aspartic acid in some bacteria (intestinal microflora) and plants. Nicotinate-nucleotide pyrophosphorylase converts QA into nicotinic acid mononucleotide (NaMN) by transfering a phosphoribose group. Nicotinamide mononucleotide adenylyltransferase then transfers an adenylate group to form nicotinic acid adenine dinucleotide (NaAD). Lastly, the nicotinic acid group is amidated to form a nicotinamide group, resulting in a molecule of nicotinamide adenine dinucleotide (NAD). Additionally, NAD can be phosphorylated to form NADP. The salvage pathway involves recycling nicotinamide and nicotinamide-containing molecules such as nicotinamide riboside. The precursors are fed into the NAD+ biosynthetic pathwaythrough adenylation and phosphoribosylation reactions. These compounds can be found in the diet, where the mixture of nicotinic acid and nicotinamide are called vitamin B3 or niacin. These compounds are also produced within the body when the nicotinamide group is released from NAD+ in ADP-ribose transfer reactions.

SMP0000053

Pw000024 View Pathway
Metabolic

Folate Metabolism

Folate, or folic acid, is a very important B-vitamin involved in cell creation and preservation, as well as the protection of DNA from mutations that can cause cancer. It is commonly found in leafy green vegetables, but is also present in many other foods such as fruit, dairy products, eggs and meat. Folate is imperative during pregnancy as a deficiency will cause neural tube defects in the offspring. Many countries around the world now fortify foods with folic acid to prevent such defects. This pathway begins in the extracellular space, where folic acid is transported into the cell through a proton-coupled folate transporter. From there, dihydrofolate reductase converts folic acid into dihydrofolic acid. Dihydrofolic acid is then created into tetrahydrofolic acid through dihydrofolate reductase. Tetrahydrofolic acid then sparks the beginning of many reactions and subpathways including purine metabolism and histidine metabolism. There are two reactions that tetrahydrofolic acid undergoes, the first being the catalyzation into tetrahydrofolyl-[glu](2) through the enzyme folylpolyglutamate synthase in the mitochondria. Then, tetrahydrofolyl-[glu](2) becomes tetrahydrofolyl-[glu](n) through folylpolyglutamate synthase. The cycle ends with tetrahydrofolyl-[glu](n) reverting to tetrahydrofolyl-[glu](2) in the lysosome through the enzyme gamma-glutamyl hydrolase. The second reaction that begins with tetrahydrofolic acid sees tetrahydrofolic acid turned into 10-formyltetrahydrofolate through c-1-tetrahydrofolate synthase. This loop is completed by cytosolic 10-formyltetrahydrofolate dehydrogenase reverting 10-formyltetrahydrofolate back to tetrahydrofolic acid. Folate is not stored in the body for very long, as it is a water soluble vitamin and is excreted through urine, so it is important to ingest it continually, as your body’s level of folate will decline after a few weeks if the vitamin is avoided.
Showing 21 - 30 of 49833 pathways