Loader

Pathways

PathWhiz ID Pathway Meta Data

PW121869

Pw121869 View Pathway
disease

2-Ketoglutarate Dehydrogenase Complex Deficiency

Mus musculus
2-Ketoglutarate dehydrogenase complex deficiency, also known as alpha-ketoglutarate dehydrogenase deficiency or oxoglutaric aciduria, is an autosomal recessive disorder of the Krebs cycle caused by a defective oxoglutarate dehydrogenase complex (OGDC). OGDC catalyzes the conversion of 2-ketoglutarate into succinyl-CoA. This disorder is characterized by a large accumulation of 2-ketoglutarate in the urine. Symptoms of the disorder include opisthotonus, ataxia, developmental delay, and seizures.

PW132375

Pw132375 View Pathway
metabolic

2-mercaptobenzothiazole Drug Metabolism

Homo sapiens
2-mercaptobenzothiazole is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. 2-mercaptobenzothiazole passes through the liver and is then excreted from the body mainly through the kidney.

PW146374

Pw146374 View Pathway
drug action

2-mercaptobenzothiazole Drug Metabolism Action Pathway

Homo sapiens

PW121916

Pw121916 View Pathway
disease

2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency

Rattus norvegicus
2-Methyl-3-hydroxybutyryl CoA dehydrogenase deficiency (Hydroxyl-CoA dehydrogenase deficiency; MHBD) is a rare inborn disease of metabolism caused by a mutation in the HSD17B10 gene which codes for 3-hydroxyacyl-CoA dehydrogenase type-2. A deficiency in this enzyme results in accumulation of L-lactic acid in blood, spinal fluid, and urine; 2-ethylhydracrylic acid, 2-methyl-3-hydroxybutyric acid, and tiglylglycine in urine. Symptoms include cerebal atrophy, motor and mental retardation, overactivity and behavior issues, seizures and progressive neurological defects leading to early death. Treatment includes a high carbohydrate and low protein diet.

PW121690

Pw121690 View Pathway
disease

2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency

Mus musculus
2-Methyl-3-hydroxybutyryl CoA dehydrogenase deficiency (Hydroxyl-CoA dehydrogenase deficiency; MHBD) is a rare inborn disease of metabolism caused by a mutation in the HSD17B10 gene which codes for 3-hydroxyacyl-CoA dehydrogenase type-2. A deficiency in this enzyme results in accumulation of L-lactic acid in blood, spinal fluid, and urine; 2-ethylhydracrylic acid, 2-methyl-3-hydroxybutyric acid, and tiglylglycine in urine. Symptoms include cerebal atrophy, motor and mental retardation, overactivity and behavior issues, seizures and progressive neurological defects leading to early death. Treatment includes a high carbohydrate and low protein diet.

PW000061

Pw000061 View Pathway
disease

2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency

Homo sapiens
2-Methyl-3-hydroxybutyryl CoA dehydrogenase deficiency (Hydroxyl-CoA dehydrogenase deficiency; MHBD) is a rare inborn disease of metabolism caused by a mutation in the HSD17B10 gene which codes for 3-hydroxyacyl-CoA dehydrogenase type-2. A deficiency in this enzyme results in accumulation of L-lactic acid in blood, spinal fluid, and urine; 2-ethylhydracrylic acid, 2-methyl-3-hydroxybutyric acid, and tiglylglycine in urine. Symptoms include cerebal atrophy, motor and mental retardation, overactivity and behavior issues, seizures and progressive neurological defects leading to early death. Treatment includes a high carbohydrate and low protein diet.

PW127223

Pw127223 View Pathway
disease

2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency

Homo sapiens
2-Methyl-3-hydroxybutyryl CoA dehydrogenase deficiency (Hydroxyl-CoA dehydrogenase deficiency; MHBD) is a rare inborn disease of metabolism caused by a mutation in the HSD17B10 gene which codes for 3-hydroxyacyl-CoA dehydrogenase type-2. A deficiency in this enzyme results in accumulation of L-lactic acid in blood, spinal fluid, and urine; 2-ethylhydracrylic acid, 2-methyl-3-hydroxybutyric acid, and tiglylglycine in urine. Symptoms include cerebal atrophy, motor and mental retardation, overactivity and behavior issues, seizures and progressive neurological defects leading to early death. Treatment includes a high carbohydrate and low protein diet.

PW002096

Pw002096 View Pathway
metabolic

2-O-alpha-Mannosyl-D-glycerate Degradation

Escherichia coli
2-O-α-Mannosyl-D-glycerate (MG; also named as Alpha-Mannosylglycerate) is an organic compound that will affect the osmosis in hyperthermophilic archaea and bacteria. In E.coli, 2-O-α-mannosyl-D-glycerate PTS permease (mngA) import MG into cell, and then phosphorylate MG to 2-O-(6-phospho-α-mannosyl)-D-glycerate by phosphocarrier protein HPr. 2-O-(6-phospho-α-mannosyl)-D-glycerate is converted to glyceric acid as well as mannose 6-phosphate by alpha-mannosidase mngB. Finally, glyceric acid is catalyzed to 2-Phospho-D-glyceric acid with ATP as energy source by Glycerate kinase 2. E.coli can't use MG as osmotic stress protection, but it can use MG as a carbon source.

PW002108

Pw002108 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Escherichia coli
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)

PW123572

Pw123572 View Pathway
metabolic

2-Oxoglutarate Decarboxylation to Succinyl-CoA

Pseudomonas aeruginosa
2-oxoglutarate dehydrogenase complex is consisted of oxoglutarate decarboxylase, dihydrolipoyl succinyltransferase and dihydrolipoyl dehydrogenase), which is a rate-limiting enzyme of the citric acid cycle (TCA cycle) in prokaryote. The reaction that catalyzed by 2-oxoglutarate dehydrogenase complex can be generalized as 2-oxoglutarate + coenzyme A + NAD+ → succinyl-CoA + CO2 + NADH. During the OGDHC reaction cycle, 2-oxoglutarate is bound and decarboxylated by E1(o), a thiamin-diphosphate cofactor containing enzyme. The succinyl group is transferred to the lipoyl domain of E2(o) where it is carried to the active site and transferred to coenzyme A, forming succinyl-CoA. During this transfer the lipoyl group is reduced to dihydrolipoyl. The succinyl-CoA is released and the lipoyl domain of E2(o) is oxidized by E3 via transfer of protons to NAD, forming NADH and regenerating the lipoyl group back to lipoyllysine for another cycle. Under aerobic growth conditions the OGDHC not only catalyzes a key reaction in the TCA cycle, it also provides succinyl-CoA for methionine and lysine biosynthesis, the latter pathway also leading to peptidoglycan biosynthesis. The synthesis of the OGDHC is repressed by anaerobiosis and is also subject to glucose repression. It is induced by aerobic growth on acetate. (EcoCyc)